Computational functional genomics
(Spring 2001: Lecture 5)

David K. Gifford
(Adapted from a lecture by Tommi S. Jaakkola)
MIT LCS and AI Lab

gifford@mit.edu
Topics

- Significance testing
 - statistical tests, test statistics
 - p-values, power of a test

- Maximum a posterior estimates
 - Bayes’ rule
 - Dirichlet distributions

- Statistical models
 - linear regression

- Normalization with spiked controls
Statistical tests: example

- Defining the hypothesis:
 Let X_1 and X_2 are the random variables corresponding to the expression levels of the two genes.

 The null hypothesis H_0: X_1 and X_2 are uncorrelated:

 $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \right)$ \hspace{1cm} (1)

 The alternative hypothesis H_1: X_1 and X_2 can be correlated:
Statistical tests: example

- Defining the hypothesis:

Let X_1 and X_2 are the random variables corresponding to the expression levels of the two genes

The null hypothesis H_0: X_1 and X_2 are uncorrelated:

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \right)$$ \hspace{1cm} (2)

The alternative hypothesis H_1: X_1 and X_2 can be correlated:

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right)$$ \hspace{1cm} (3)

where Σ_{ij} is the covariance between X_i and X_j ($\sigma_i^2 = \Sigma_{ii}$)
Statistical tests: example

- The alternative hypothesis \(H_1 \) is more expressive in terms of explaining the observed data.

- We need to find a way of testing whether this difference is significant.
Test statistic

- Likelihood ratio statistic

\[T(X^{(1)}, \ldots, X^{(n)}) = 2 \log \frac{P(X^{(1)}, \ldots, X^{(n)} | \hat{H}_1)}{P(X^{(1)}, \ldots, X^{(n)} | \hat{H}_0)} \quad (4) \]

Larger values of \(T \) imply that the model corresponding to the null hypothesis \(H_0 \) is much less able to account for the observed data.

- To evaluate the P-value, we also need to know the sampling distribution for the test statistic.

In other words, we need to know how the test statistic \(T(X^{(1)}, \ldots, X^{(n)}) \) varies if the null hypothesis \(H_0 \) is correct.
Test statistic cont’d

- For the likelihood ratio statistic, the sampling distribution is χ^2 with degrees of freedom equal to the difference in the number of free parameters in the two hypotheses.

- Once we know the sampling distribution, we can compute the P-value

\[p = \text{Prob}(T(X^{(1)}, \ldots, X^{(n)}) \geq T_{\text{obs}} | H_0) \]

(5)
Degrees of freedom

- How many degrees of freedom do we have in the two models?

\[H_0 : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \right) \]

\[H_1 : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) \]
Degrees of freedom

• How many degrees of freedom do we have in the two models?

\[H_0 : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \right) \]

\[H_1 : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) \]

• The observed data overwhelmingly supports \(H_1 \)
Maximum likelihood principle: Binomial

- Maximum likelihood principle: we find the parameter \(\hat{\theta} \) that maximize the likelihood of the observed data

\[
\hat{\theta} = \arg\max_{\theta} L(x^{(1)}, \ldots, x^{(n)}|\theta)
\]

(6)

The Maximum likelihood estimate (MLE) for the Binomial PMF is

\[
P(k_N|\theta) = \binom{N}{k} \theta^k (1 - \theta)^{N-k}
\]

(7)

\[
\log P(k_N|\theta) = \log \binom{N}{k} + k \log \theta + (N - k) \log (1 - \theta)
\]

(8)

\[
\frac{d}{d\theta} P(k_N|\theta) = \frac{k}{\theta} - \frac{N - k}{1 - \theta}
\]

(9)

\[
0 = \frac{k}{\theta} - \frac{N - k}{1 - \theta}
\]

(10)

\[
\hat{\theta} = \frac{k}{N}
\]

(11)
Bayes’ Rule

- Key to Bayesian analysis is Bayes’ Rule

\[P(A, B) = P(A|B)P(B) = P(B|A)P(A) \quad (12) \]
\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad (13) \]
Maximum a Posterior Estimators (MAP)

- Assume that we know something about a coin before we observe N trials
- Prior knowledge can take on many forms
 - Assumptions (mRNA levels are never negative)
 - Data (other experiments suggests that protein A regulates gene B)
 - Estimates (our best estimate of the parameters so far)
- How do we express this knowledge so that it can be used in a principled way?
- Represent this knowledge as a distribution over model parameters
 - In the case of a coin, as a distribution over θ
Maximum a Posterior Estimators (MAP)

- Bayesians use prior knowledge when analyzing data
 - This can lead to different conclusions from the same data, depending on your prior
- Frequentists believe that conclusions from data should always be the same
- Using Bayes’ Rule in our Binomial example:

\[
P(\theta|k_N) = \frac{P(k_N|\theta)P(\theta)}{P(k_N)} \tag{14}
\]

- Let’s represent \(P(\theta) \) as:

\[
P(\theta) = C(\alpha)\theta^{\alpha_1-1}(1-\theta)^{\alpha_2-1} \tag{15}
\]

\[
\alpha_1 = pS + 1 \tag{16}
\]

\[
\alpha_2 = (1-p)S + 1 \tag{17}
\]
Dirichlet Distributions

• $P(\theta)$ is a Dirichlet distribution, and is a conjugate distribution to the Binomial distribution:

\[
P(\theta) = C(\alpha)\theta^{\alpha_1-1}(1-\theta)^{\alpha_2-1}
\]

\[
\alpha_1 = pS + 1
\]

\[
\alpha_2 = (1-p)S + 1
\]

• This binomial form of the Dirichlet distribution is called the Beta distribution.

• Now:

\[
P(\theta|k_N) = \frac{\binom{N}{k} C(\alpha)\theta^k pS (1-\theta)^{(N-k)+(1-p)S}}{P(k_N)}
\]

\[
\frac{d}{d\theta} P(\theta|k_N) = \frac{k + pS}{\theta} - \frac{(N-k) + (1-p)S}{1-\theta}
\]

\[
\hat{\theta}_{MAP} = \frac{k + pS}{N + S}
\]